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Abstract. The problem of light diffraction by a micro-optical diffractive element is investigated. The method
of stationary phase is applied to obtain approximate values of the integrals in the Kirchhoff approximation.
The accuracy of the asymptotic approximation is studied in detail. As an application, the obtained approximate
formulas are used to solve a design problem of constructing a diffractive optical element with a desired intensity
distribution.
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1. Introduction

In this work, we refer to a Diffractive Optical Element (DOE) as a micro-optical element
which modifies incoming light so as to produce a desired intensity pattern on an image plane.
We show a schematic of such a system in Figure 1. One application of this technology is in
the ‘writing’ of fiber Bragg gratings. In this application, UV (ultra-violet) light is modified by
a DOE, so as to produce a modulated periodic light intensity on a treated fiber [1].

The system we analyze consists of an opaque screen with an aperture over which a DOE
is placed. The DOE could be made from a thin film whose thickness varies as a function of
position. It is placed far from the light source, so that an incoming light can be assumed to be a
plane wave. As the light goes through the DOE, its properties (the phase and/or the amplitude)
are changed according to the principles of optics. The modified outgoing light, which is no
longer a plane wave, produces a certain intensity pattern on the image plane. We refer to the
problem of determining the intensity pattern given a complete information about the DOE as
the Forward Problem.

Of our particular interest is the design of a DOE, also called an Inverse Problem. Given
geometrical and physical parameters of the system and a target pattern, we would like to
determine the features, such as a thickness variation, of the DOE that produces an intensity
pattern that is as close to the target as possible. The inverse problem can be complicated by
specific constraints coming from manufacturing. For example, the thickness of the film may
be restricted to be piecewise constant, satisfy a given resolution and take on only one of l
(≥ 2) given values, where l corresponds to discrete relief levels. The smaller the value of l, is
the cheaper the manufacturing process will be.



256 S. Rudnaya et al.

Figure 1. Using the DOE to produce a certain light intensity pattern.

In this work, we use formal asymptotics to analyze the relationship between a DOE and the
intensity image it creates. We start with the Kirchhoff model of diffraction, which represents
the scalar wave amplitude as an integral over the aperture. Because the DOE considered in
this work has rapidly oscillatory thickness variation, with a smooth envelope, we can use the
method of stationary phase (and also the method of multiscale expansion; see Appendix) to
simplify the said relationship. The simplified formula is used to approximately design a DOE
with a given intensity pattern.

The paper is organized as follows. In the next section, we describe the forward problem
in the form of the Kirchhoff integral. Section 3 contains the stationary-phase analysis of the
integral when the DOE has a multiscale structure. In Section 4, we show how the simplified
formula can be used in a design process. The main ideas are illustrated throughout with nu-
merical examples. We conclude with a discussion of our approach and its place in the design
of a DOE. An appendix is provided which gives an alternate technique for the asymptotic
analysis of the Kirchhoff integral.

2. The forward problem

In our model we use the Rayleigh-Sommerfeld diffraction theory, which treats light as a scalar
phenomenon [2], considering only the scalar amplitude of one component of either the electric
or magnetic field and neglecting any relation between them through Maxwell’s equations.
This assumption has been shown experimentally to give very accurate results, provided that
the diffracting aperture is large compared with the wavelength and the diffracted fields are
observed not too close to the aperture. These conditions are satisfied in our problem. Another
assumption is that we consider only monochromatic waves.

2.1. KIRCHHOFF APPROXIMATION OF DIFFRACTION

We start with the Helmholtz equation for a complex wave amplitude U(x)

(∇2 + k2)U = 0, (1)

where k is called the wave number and given by k = 2π/λ (λ is wavelength). Thus, U is a
scalar field representing either the electric or magnetic field.
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Figure 2. Contour of integration.

We next derive a 2-D version of the Kirchhoff approximation. Our development follows
that in [3]. Let P0 = (x0, z0) be the point of observation, S be an arbitrary closed curve
surrounding P0 and V be the region bounded by S. Let Sε be a circle of small radius ε about
the point P0, V ′ be the region lying between S and Sε, S ′ = S + Sε, see Figure 2.

If U satisfies the Helmholtz equation in V andG satisfies the Helmholtz equation in V ′ for
any ε > 0, then∫

V ′
(G∇2U − U∇2G)dxdz = −

∫
V ′
(GUk2 − UGk2)dxdz ≡ 0.

Applying Green’s formula over V ′ to the expression, we obtain∫
S ′

(
G
∂U

∂n
− U ∂G

∂n

)
ds = 0

or ∫
S

(
G
∂U

∂n
− U ∂G

∂n

)
ds = −

∫
Sε

(
G
∂U

∂n
− U ∂G

∂n

)
ds,

where the normal vector n̄ is taken outward of P0 on S, but toward P0 on Sε.
Choose G to be a constant multiple of the free-space Green’s function. With P1 = (x, z),

we have that G(P1) = H(1)0 (kr), where H(1)0 is the Hankel function of the zeroth order [4, 5],
and

r =
√
(x − x0)

2 + (z − z0)
2.

Then G satisfies the 2D Helmholtz equation (1) and

∂G

∂n
= −k cos(n̄, r̄)H(1)1 (kr),

where H(1)1 is the Hankel function of the first order, and r̄ is the unit vector pointing from P0

to P1.
For P1 on Sε (ε 	 1),

G ∼ 2i

π
log ε,

∂G

∂n
∼ 2i

πε
.
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Figure 3. The choice of curve S = SL + SR .

Therefore

lim
ε→0

∫
Sε

Gds = lim
ε→0

2πε

(
2i

π
log ε

)
= 0,

lim
ε→0

∫
Sε

∂G

∂n
ds = lim

ε→0
2πε

(
− 2i

πε

)
= −4i,

and we get [6]

U(P0) = i

4

∫
S

{
∂U

∂n
G− U ∂G

∂n

}
ds. (2)

This result, called the integral theorem of Helmholtz and Kirchhoff [3], allows the field at
any point P0 to be expressed in terms of the ‘boundary values’ of the wave on any closed
surface surrounding that point.

We now proceed by choosing the closed curve S. Let the closed curve S consist of two
parts, SL and SR, as shown in Figure 3, so that the line segment, SL, lies directly behind the
diffracting screen and is joined by a large circular arc, SR, of radius R and centered at the
observation point P0.

Using the Hankel functions properties [7] for large arguments (ξ →∞)

H(1)0 (ξ) ∼
√

2

πξ
ei(ξ− π4 ), H(1)1 (ξ) ∼

√
2

πξ
ei(ξ− 3π

4 ),

and the 2D Sommerfeld radiation condition at infinity

lim
R→∞

√
R

(
∂U

∂n
− ikU

)
= 0 (uniformly in angle),

we conclude that the integral over SR vanishes, and we are left with
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U(P0) = i

4

∫
SL

{
∂U

∂n
G− U ∂G

∂n

}
ds. (3)

To simplify formula (3) we modify the Green’s function, G, so that it will vanish over the
entire surface SL. The development leading to (3) remains valid with this modification. The
modified Green’s function in this case is given by

G̃(P1) = H(1)0 (kr)− H(1)0 (kr̃),

where r = |r̄| = |−−→P0P1|, r̃ = |˜̄r| = |−−→P̃0P1|, P̃0 is the mirror image of P0 on the opposite side
of the screen. Computing the normal derivative of G̃ and simplifying, we obtain

U(P0) = ik

2

∫
SL

U(P1)
z0

r
H(1)1 (kr)ds. (4)

Now apply the Kirchhoff boundary conditions [8] to (4):
1. Across the aperture Sa, the field distribution U is exactly the same as it would be in the

absence of the screen;
2. Over SL \Sa (the geometrical shadow of the screen), the field distribution U is identically

zero.
The integral in (4) reduces to

U(P0) = ik

2

∫
Sa

U(P1)
z0

r
H(1)1 (kr)ds, (5)

or, for kr large,

U(P0) = e−i π4 z0√
λ

∫
Sa

U(P1)
eikr

r3/2
ds.

Formula (5) is often referred to as the Kirchhoff Approximation.
The formula allows one to find the field at any point P0 from knowledge of the field at the

aperture Sa . Then the intensity is given by

I (P0) = |U(P0)|2 = z2
0

λ

∣∣∣∣∣∣
∫
Sa

U(P1)
eikr

r3/2
ds

∣∣∣∣∣∣
2

. (6)

2.2. LENS MODEL

In our problem the DOE serves as the ‘aperture’. Formula (6) allows us to compute the light
intensity in the near field of the DOE, provided that we know the amplitude of the light on the
DOE.

Let a light source be placed far behind the DOE, so that the light is assumed to propagate
as a planar wave and the complex amplitude before the DOE is represented by U0. As the
light goes through the DOE, it may change its amplitude and phase depending on the physical
properties and geometrical structure of the DOE.

The DOE considered in this work is assumed to change only the phase of the light. The
phase shift can be achieved by varying the thickness and/or the refractive index of the material
of the DOE; see Figure 4.

For example, let P1(x, 0) be on the DOE and let the thickness at that point be d(P1). If the
refractive index of the material be n, then the phase shift at this point is approximately
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Figure 4. An example of a DOE.

φ(P1) = 2π

λ
(n− 1)d(P1), (7)

where λ is the wavelength of the light source. In this case at point P1, U0 will be changed to
U(P1) = U0eiφ(P1). Therefore, the required phase shift can be achieved just by varying the
thickness profile of the element. In any case, due to the simplicity of relation (7), from now
on we will only consider the phase shift created by a DOE, not its thickness variation.

In general, if U(P1) = U0 p(P1) then for P0(x, z), we have

U(P0) = e−i π4 z√
λ
U0

∫
p(s)

eikr

r3/2
ds, (8)

where r = √(x − s)2 + z2 and

I (x) = |U0|2 z
2

λ

∣∣∣∣ ∫ p(s) eikr

r3/2
ds

∣∣∣∣2 .
Here p(s) represents the change in the wave caused by the DOE. For instance, p(s) = eiφ(s)

would represent an element that changes only the phase. Since we are interested only in the
shape of the intensity profile, we may set U0 = 1.

Formula (8) describes the so-called Forward problem. Given p(·)we can determine I (·). In
numerical calculations, integration in (8) is performed by quadrature with required accuracy.

3. Asymptotic analysis

According to the Kirchhoff approximation with the lens model, the relation between intensity
I (·) and the DOE, represented by phase p(x), is given by (8). The numerical integration
involved in (8) can be very expensive computationally (especially in 3-D). We will look for
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approximate expressions for the integrals for the special case where the phase function, p(·),
involves two scales.

We assume that p(x) has compact support [−w,w], where w � λ, λ = 2π/k is the
wavelength of the light source. By the two-scales, we mean that

p(x) = P
(
x,
x

 

)
,

where  /w 	 1 and P(x, y) is periodic in y.
We write u(x, z) instead of U(P0). Rescale the problem

x̃ = x

w
, z̃ = z

w
, p̃(x̃) = p(wx̃), ũ(x̃, z̃) = u(wx̃,wz̃), (9)

drop the ‘tildes’, and rewrite integral in (8) as

u(x, z) = z√
2π iε

1∫
−1

p(s)
eir/ε

r3/2
ds, (10)

where r = √(x − s)2 + z2, ε = 1
wk

= λ
2πw 	 1. We have set U0 = 1 in arriving at (10).

After the rescaling, we note that p(x) = P(x, x/ε) with P(x, y) periodic of period 2π/γ
in y, where γ = λ

 
. Therefore, it can be written in the form

P(x, y) =
∞∑

n=−∞
Pn(x)e

iγ ny ,

where

Pn(x) = γ

2π

2π/γ∫
0

P(x, y)e−iγ nydy.

Then

p(x) = P
(
x,
x

ε

)
=

∞∑
n=−∞

Pn(x)e
iγ nx/ε.

Since integral (10) is linear with respect to p(x), the solution can be found in the form

u(x, z) =
∞∑

n=−∞
un(x, z),

where each un(x, z) is a solution for (10) p equal to Pn(x)eiγ nx/ε. So, we can reduce our
analysis to the case p(x) = A(x)eiBx/ε.

3.1. METHOD OF STATIONARY PHASE

The method of stationary phase [9] describes the asymptotic behavior of the integral

J =
b∫
a

f (t)eiχg(t)dt,
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where χ is a large positive real parameter. We review the basic assumptions and the approxi-
mation properties of the method.

3.1.1. Assumptions
i. −∞ < a < b ≤ ∞.
ii. In (a, b), g(m+1)(t), f (m)(t) are continuous, m ≥ 0, g(t) is real-valued, g′(t) > 0,

g(b − 0) <∞.
iii. As t → a+,

f (t) ∼
∞∑
s=0

fs(t − a)s, g(t) ∼ g(a)+
∞∑
s=0

gs(t − a)s+µ,
where f0, g0 are nonzero, µ > 0. Moreover, the first of these expansions is differentiable
m times and the second m+ 1 times.

iv. Let Ps(t) =
{

1

g′(t)
d

dt

}s
f (t)

g′(t)
. Then lim

t→b−Ps(t) <∞, s = 0, 1, . . . , m.

v. a, b, f , and g are independent of χ .

3.1.2. Main results
Let
i. n ≥ 0, mµ− 1 ≤ n < (m+ 1)µ, and ν = max(n,mµ),
ii. v = g(t)− g(a), and F(v) = P0(t).

For small v, F(v) can be expanded in asymptotic series of the form

F(v) ∼
∞∑
s=0

asv
(s+1−µ)/µ,

where the coefficients as may be found by reverting series, in particular,

a0 = f0

µg
1/µ
0

, a1 =
{
f1

µ
− 2g1f0

µ2g0

}
1

g
2/µ
0

.

Then

J = eiχg(a)
ν∑
s=1

ei sπ2µ2

(
s

µ

)
as−1

χs/µ
− eiχg(b)

m∑
s=1

Ps−1(b)

(
i

χ

)s
+ err. (11)

The error term is given by

err =
(

i

χ

)m b∫
a

eiχg(t)Q′
m,n(t)dt + 0

(
1

χm+1

)
,

where

Qm,n(t) = Pm−1(t)−
n∑
s=1

2
(
s
µ

)
2
(
s
µ
−m+ 1

) as−1

{g(t)− g(a)}m−s/µ .

The method of stationary phase is mostly known [5] by its first term that describes the leading
behavior of the integral J for µ = 2

J =
∫
f (t)eiχg(t)dt ∼ f (t0)eiχg(t0)

√
2π i

χg′′(t0)
, χ →∞,
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where t0 is the stationary point of g(t), g′′(t0) > 0.

3.2. APPLICATION TO KIRCHHOFF APPROXIMATION

Recall, that we investigate integral (10) with p(x) = A(x)eiBx/ε

u(x, z) = z√
2π iε

1∫
−1

A(t)

r3/2
ei(Bt+r)/εdt,

where r = √(x − t)2 + z2, ε 	 1.
LetA(x) be continuous and twice differentiable on (−1, 1). Apply the method of stationary

phase (11) to the integral

J =
1∫

−1

A(t)

r3/2
ei(Bt+r)/εdt,

with

f (t) = A(t)

r3/2
, g(t) = Bt + r, P0(t) = A(t)

r1/2(Br + t − x) , χ = 1

ε
.

Since g′(t) = B + t−x
r

, the stationary point t0 exists (and is unique) iff |B| < 1,

t0 = x − B
β
z, and β =

√
1 − B2.

In this case

f (t0) = A(t0)
(
β

z

)3/2

, g(t0) = Bx + βz, g′′(t0) = β3

z
.

Consider 4 possible cases regarding the stationary point t0.

3.2.1. Case I
|B| < 1, |t0| < 1, i.e. the stationary point t0 is an inside point of the interval.

Apply the method of stationary phase for the intervals (−1, t0) and (t0, 1) with parameters

m = 2, µ = 2, n = 3, ν = 4,

g0 = 1

2
g′′(t0), f0 = f (t0), a0 = f0

2
√
g0

= A(t0)√
2z
.

Then we get, as a final result,

u(x, z) = A(t0)eig(t0)/ε −√
ε
zeiπ/4

√
2π

[
P0(1)e

ig(1)/ε − P0(−1)eig(−1)/ε
]
+ O(ε),

or in terms of x and z,

u(x, z) = A
(
x − B

β
z

)
ei(Bx+βz)/ε +√

ε
[
Q(x, z; 1) −Q(x, z;−1)

]
+ O(ε), (12)
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Figure 5. Numerical calculations of |u(x, z)| (forA(t) ≡ 1, B = 0, ε = 2×10−3, z = 0·1): (a) the exact integral,
(b) O(1) approximation; (c) O(

√
ε) approximation.

where

Q(x, z; t) = −ze
iπ/4

√
2π

A(t)

r1/2(Br + t − x)e
i(Bt+r)/ε, (13)

r =
√
(x − t)2 + z2.

Note thatQ(x, z;±1) terms introduce disturbance due to the endpoints t = ±1 of the interval
of integration.

Since A(t) is defined and continuous only on (−1, 1), A(1) and A(−1), in (12), (13), are
assumed in the sense of the limiting values lim

t→1−
A(t) and lim

t→−1+
A(t).

3.2.2. Case II
|B| < 1, t0 = ±1, i.e. the stationary point t0 is an endpoint of the interval.

Apply the method of stationary phase for the interval (−1, 1) with the same parameters as
in Case I. Then we get

u(x, z) = 1

2
A(t0)e

ig(t0)/ε ∓√
ε
zeiπ/4

√
2π

[
f1

2g0
eig(t0)/ε − P0(∓1)eig(∓1)/ε

]
+ O(ε),

or, in terms of x and z, (note that here x = ±1 + B
β
z)

u(x, z) = 1

2
A(±1)ei(Bx+βz)/ε ±√

ε
[
Q̂(x, z;±1) −Q(x, z;∓1)

] + O(ε), (14)

where

Q̂(x, z; t) = −ze
iπ/4

√
2π

[
3

2

A(t)B√
βz3

+ A′(t)√
β3z

]
ei(Bt+r)/ε.

Again, A(t), A′(t) at endpoints t = ±1 are assumed in the sense of the limiting values from
inside of the interval.

3.2.3. Case III
|B| < 1, |t0| > 1, i.e. the stationary point t0 is outside of the interval.

Then, on [−1, 1] g(t) > 0 (or < 0). Apply the method of stationary phase for the interval
(−1, 1) with
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m = 1, µ = 1, n = 0, ν = 0,

g0 = g′(∓1), f0 = f (∓1), a0 = f0

g0
.

Then

u(x, z) = ±√ε
[
Q(x, z; 1) −Q(x, z;−1)

]
+ O(ε3/2). (15)

3.2.4. Case IV
|B| ≥ 1, i.e. there are no stationary points.

Apply the method of stationary phase for the interval (−1, 1) with the same parameters as
in Case III. Then

u(x, z) = ±√ε
[
Q(x, z; 1) −Q(x, z;−1)

]
+ O(ε3/2). (16)

3.2.5. Leading-order approximation.
Extend A(x) on (−∞,∞) as follows

A(−1) = 1

2
lim
t→−1+

A(t), A(1) = 1

2
lim
t→1−

A(t), A(x) ≡ 0∀|x| > 1.

Then, taking into consideration only O(1) terms in (12)–(16), we get

u(x, z) ≈
{
A
(
x − B

β
z
)

ei(Bx+βz)/ε, if |B| < 1

0, if |B| ≥ 1
for ε 	 1. (17)

3.2.6. Edge effect
Note that O(1) approximation [17] is valid as long as O(

√
ε) and higher terms are negligible.

However, it does not describe a so-called edge effect observed in the exact integral (10) near
the endpoints x = ±1 of the interval. Including O(

√
ε) terms gives better approximation to

that phenomena, see Figure 5.
To examine the effect of including O(

√
ε) terms, consider in detail Q(x, z;±1). Note that

it has a singularity at x±1 = ±1+ B
β
z (when denominator equals 0). In particular,

|Q(x, z;±1)| ∼ O

( √
z

|x − x±1|
)
, as |x − x±1| → 0.

We can summarize our findings as follows.
(i) For |x−x±1| ∼ O(

√
z) or more, the edge effect can be neglected and approximation (17)

is valid.
(ii) For |x − x±1| ∼ O(

√
εz), the edge effect cannot be neglected and O(

√
ε) terms should

be included into our approximation

u(x, z) ≈ A
(
x − B

β
z

)
ei(Bx+βz)/ε ±√

ε
[
Q(x, z; 1) −Q(x, z;−1)

]
. (18)

(iii) For |x − x±1| 	 O(
√
εz), O(

√
ε) terms do not describe the edge effect accurately.

Indeed they blow up at x → x±1.
(iv) At x = x±1, we use (14) as an approximation.
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Figure 6. The edge effect in detail (for A(t) ≡ 1, B = 0, ε = 2 × 10−3, z = 0·1): (a) the exact integral, (b) O(1)
approximation; (c) O(

√
ε) approximation.

See Figure 6 for a detailed picture of the exact integral and its approximations in the
neighborhood of the endpoint x = 1. We can see that O(

√
ε) approximation (18) gives a

good approximation to the edge effect, except when |x − 1| ≤ 0·03 ≈ 2
√
εz, which agrees

with the above conclusions. A different expansion is needed in the neighborhood of the edge.

3.3. GENERAL TWO-SCALE PHASES

Consider now a two-scale p(x) which can be expanded as

p(x) =
∞∑

n=−∞
Pn(x)e

inγ x/ε.

The solution for u can be found in the form

u(x, z) =
∞∑

n=−∞
un(x, z),

where each un(x, z) is a Kirchhoff approximation (10) with the phase Pn(x)eiγ nx/ε. Using the
first-order approximation in (17), we can write

un(x, z) ≈ Pn
(
x − nγ

βn
z

)
ei(nγ x+βnz)/ε,

where βn =
√

1 − (nγ )2. Note that for n > 1/γ , βn is imaginary and un(x, z) corresponds
to evanescent waves. Because of their exponential decay in z, we will simply ignore their
contribution. Therefore, for ε 	 1,

u(x, z) ≈
∑

|n|<1/γ

Pn

(
x − nγ

βn
z

)
ei(nγ x+βnz)/ε. (19)
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Note that we are interested in the near field of the boundary z = 0 (where the z-range is
small in comparison to the x-range). For small |n|z, we can simplify (19) to

u(x, z) ≈
∑

|n|<1/γ

Pn(x)e
inγ x/εeiβnz/ε.

Going back to the original, ‘physical’, variables, which were rescaled in (9), we get the
following result. Let p(x) have representation

p(x) = P
( x
w
,
x

 

)
=

∞∑
n=−∞

Pn

( x
w

)
ei2πnx/ ,

where

Pn(x) =
1∫

0

P(x, y)e−i2πnydy.

Then

u(x, z) ≈
∑

|n|<1/γ

Pn

( x
w

)
ei2πnx/ eiβnz,

where βn = k
√

1 − (nγ )2 and the intensity is given by

I (x, z) = |u(x, z)|2
[∑

n

Pne
i2πnx/ eiβnz

][∑
m

P ∗
me−i2πmx/ e−iβmz

]
=

=
∑
n

|Pn|2 +
∑
n�=0

PnP
∗
−ne

i4πnx/ 

︸ ︷︷ ︸
I1(x)

+
∑∑
|n|�=|m|

PnP
∗
mei2π(n−m)x/ ei(βn−βm)z

︸ ︷︷ ︸
I2(x,z)

.

That is, we can separate I (x, z) into two parts: I1(x), which does not depend on z and I2(x, z),
which contains only terms periodic in z. This may help us to simplify the expression for
I (x, z). Consider two special cases:

3.3.1. Case A
P−n = Pn. Then

u(x, z) = P0eiβ0z + 2
∑
n>0

Pn cos
(

2πn
x

 

)
eiβnz,

I1(x) = |P0|2 + 4
∑
n>0

|Pn|2 cos2
(

2πn
x

 

)
,

I2(x, z) = 4
∑
n>0

sin
(

2πn
x

 

)
Re[P0P

∗
n ei(β0−βn)z]+

8
∑∑
0<n<m

sin
(

2πn
x

 

)
cos
(

2πm
x

 

)
Re[PnP ∗

mei(βn−βm)z].

(20)

3.3.2. Case B
P−n = −Pn, n �= 0. Then
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u(x, z) = P0eiβ0z + 2i
∑
n>0

Pn sin
(

2πn
x

 

)
eiβnz,

I1(x) = |P0|2 + 4
∑
n>0

|Pn|2 sin2
(

2πn
x

 

)
,

I2(x, z) = 4
∑
n>0

cos
(

2πn
x

 

)
Im[P0P

∗
n ei(β0−βn)z]+

8
∑∑
0<n<m

cos
(

2πn
x

 

)
sin
(

2πm
x

 

)
Re[PnP ∗

mei(βn−βm)z].

(21)

3.4. AVERAGING THE INTENSITY OVER THE z-INTERVAL

In practice, we may be interested in the intensity not at a single plane z = z0 but rather in the
average intensity Iavr(x) over some interval in z ∈ (z0 − 6z

2 , z0 + 6z
2 )

Iavr(x) = 1

6z

z0+6z2∫
z0−6z2

I (x, z)dz = I1(x)+ Î2(x; z0,6z), (22)

where

Î2(x; z0,6z) = 1

6z

z0+6z2∫
z0−6z2

I2(x, z)dz.

We next investigate situations under which the z-dependent term, i.e. Î2(x; z0,6z) can be
neglected. Note that

Î2(x; z0,6z) =
∑∑
|n|�=|m|

PnP
∗
mei2π(n−m)x/ Mnm,

where

Mnm = 1

6z

z0+6z2∫
z0−6z2

ei(βn−βm)zdz = ei(βn−βm)z0sinc

[
(βn − βm)6z

2π

]
,

and sinc(x) = sin(πx)/(πx). Since

|Mnm| ≤
∣∣∣∣ 2

(βn − βm)6z
∣∣∣∣ ≤ 4

kγ 26z|m2 − n2| , ∀m,n, |m| �= |n|,

then

|Î2(x; z0,6z)| ≤ 4

kγ 26z

∑∑
|n|�=|m|

|PnPm|
|m2 − n2| .

So, we can see that |Î2(x; z0,6z)| → 0 as 6z→∞.
Further simplifications are possible if we restrict to the case when Pn = P−n. Then, from

(20),
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Î2(x; z0,6z) = 4
∑
n>0

cos
(

2πn
x

 

)
Re[P0P

∗
nM0n]+

8
∑∑
0<n<m

cos
(

2πn
x

 

)
cos
(

2πm
x

 

)
Re[PnP ∗

mMnm],

and

|Î2(x; z0,6z)| ≤ 4
∑
n>0

|P0PnMn0| + 8
∑∑
0<n<m

|PnPmMnm|.

Note that, since Pn → 0 as n→∞, the biggest contribution to Î2(x; z0,6z) comes from the
first few nonzero terms, in particular [P0P

∗
1 M01], provided that |P0P1| �= 0. Since, for small

γ ,

2π

β0 − β1
=  2

λ
(1 +

√
1 − γ 2) ≈ 2 2

λ
= T (the Talbot distance [10]),

then

M01 ≈ T

π6z
ei2πz0/T sin

(
π
6z

T

)
, |Mnm| ≤ T

π6z

1

|m2 − n2| , ∀|m| �= |n|.

Rewrite

Î2(x; z0,6z) = 4

π

T

6z

{
cos
(

2π
x

 

)
sin

(
π
6z

T

)
Re[P0P

∗
1 ei2πz0/T ] +Q

}
, (23)

where

|Q| ≤
∑
n>1

|P0Pn|
n2

+ 2
∑∑
0<n<m

|PnPm|
m2 − n2

.

Now we can see that the expected biggest contribution to Î2(x; z0,6z) is minimized if either
Re[P0P

∗
1 ei2πz0/T ] ≈ 0 or6z/T = integer i.e. the z-interval is a multiple of the Talbot distance

T ). However, if |P0P1| = 0 or ≈ 0, other nonzero terms should be taken into consideration to
estimate Î2(x; z0,6z).

The averaged intensity is to first approximation independent of z. When conditions do not
allow us to ignore the z-dependence, an additional term is needed. In either case, the intensity
is rapidly oscillatory with period  /2. In summary, we have

3.4.1. First approximation (independent of z)
If we can neglect Î2(x; z0,6z), (22) simplifies greatly to

Iavr(x) ≈ I1(x), (24)

which does not contain direct dependence on th z-interval and is periodic with respect to the
‘fast’ variable with period  

2 .

3.4.2. Second approximation (z-dependent)
If we cannot neglect Î2(x; z0,6z), then approximate it by the first, supposedly the biggest,
term, e.g. in case Pn = P−n, P0P1 �= 0,

Iavr(x) ≈ I1(x)+ 4

π

T

6z
cos
(

2π
x

 

)
sin

(
π
6z

T

)
Re[P0P

∗
1 ei2πz0/T ].
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Figure 7. The phase function considered in the design of DOEs.

4. Design of diffractive optical elements

In this section we consider DOEs with quasi-periodic phase

p(x) = eiϕ(x), ϕ(x) = α
( x
w

)
σ
( x
 

)
,

where  
w
	 1, σ (·) is periodic with period 1; α(·) is called an ‘envelope’ function, such as

one shown in Figure 4. We can represent p(x) as

p(x) = P
( x
w
,
x

 

)
=

∞∑
n=−∞

Pn

( x
w

)
ei2πn x ,

where

Pn(X) =
1∫

0

eiα(X)σ(Y )e−i2πnYdY. (25)

In order to use the approximation formulas from the previous section, we need to know the
coefficients Pn for |n| < 1

γ
. In general, they can be computed numerically by use of (25). We

consider a few cases when they can be found analytically, such as in stepwise and sinusoidal
structures. These simple periodic structure allow us to examine the averaged intensity in detail.

4.1. FIRST APPROXIMATION (INDEPENDENT OF z)

Assume first that the dependence on z can be neglected so that the first approximation Iavr(x) ≈
I1(x) is valid.

4.1.1. Piecewise constant DOEs with variable duty cycle
Define σ (x) on the interval (− 1

2 ,
1
2) as

σ (x) =
{

1, |x| < θ/2,
0, |x| > θ/2,

where θ ∈ [0, 1] is called the duty cycle. Then

Pn(X) =
{

1 + θ(eiα − 1), n = 0,

θ(eiα − 1)sinc(nθ), n �= 0,
(26)

where α = α(x/w). Note that P−n = Pn. Then, from (20), (24),

Iavr(x) ≈ 1 − 4θ(1 − θ) sin2
(α

2

)
+ sin2

(α
2

)
>
( x
 

)
, (27)
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Figure 8. Function >(Y) for γ = 0·157, (a) θ = 0·3, (b) θ = 0·5.

where

>(Y ) = 16

π2

∑
1≤n< 1

γ

sin2(πnθ)

n2
cos2(2πnY ). (28)

An example of >(Y ) is shown in Figure 8(a).
In (27), we can see that the intensity consists of a rapid oscillation, represented by >

(
x
 

)
,

within an envelope. The upper and lower curves of the envelope, Iupper(x) and Ilower(x), are
given by

Iupper(x) = 1 − 4θ(1 − θ) sin2
(α

2

)
+ sin2

(α
2

)
max
Y
> (Y ) ,

Ilower(x) = 1− 4θ(1 − θ) sin2
(α

2

)
+ sin2

(α
2

)
min
Y
> (Y ) .

4.1.2. Piecewise constant DOEs with duty cycle= 1/2
Taking θ = 1/2 in (26)–(28) we have

Pn(X) =


(eiα + 1)/2, n = 0,

(−1)
n−1

2 eiα−1
πn
, n odd,

0, n even, �= 0,

(29)

and

Iavr(x) ≈ 1 + sin2 α

2

(
>
( x
 

)
− 1
)
, (30)

where

>(Y ) = 16

π2

∑
n odd

1≤n< 1
γ

1

n2
cos2(2πnY ),
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Figure 9. Iavr(x) for γ = 0·157, (a) α(x) ≡ π , (b) α(x) ≡ 2π .

see Figure 8(b), for an example. Since

min
Y
>(Y ) = 0, max

Y
>(Y ) = 16

π2

∑
n odd

1≤n< 1
γ

1

n2
= A,

the upper and lower curves of the envelope of Iavr(x) are

Iupper(x) = 1 + (A− 1) sin2 α

2
,

Ilower(x) = 1− sin2 α

2
.

(31)

Note that since A = A(γ ) < 2, the envelope is slightly asymmetric. However, A(γ )→ 2 as
γ → 0.

4.1.3. Sinusoidal DOEs
In this case, σ (x) = sin2(πx), and

Pn(X) = (−i)neiα/2Jn
(α

2

)
, (32)

where Jn(·) is the Bessel function of nth order. Since J−n(x) = (−1)nJn(x), P−n = Pn and,
from (20), (24), we get

Iavr(x) ≈ J2
0

(α
2

)
+ 4

∑
1≤n< 1

γ

J2
n

(α
2

)
cos2

(
2πn

x

 

)
,

see Figure 9, for example, for α(x) ≡ π and α(x) ≡ 2π .
So, the envelope of Iavr(x) has upper and lower curves

Iupper(x) = J2
0

(α
2

)
+ 4

∑
1≤n< 1

γ

J2
n

(α
2

)
,

Ilower(x) ≈ J2
0

(α
2

)
+ 4

∑
1≤n< 1

2γ

J2
2n

(α
2

)
.

(33)
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4.2. SECOND APPROXIMATION (z-DEPENDENT)

To analyze in detail what happens to the intensity profile Iavr(x), when the first approximation
is no longer valid, consider two examples.

4.2.1. Piecewise constant DOEs with duty cycle 1/2
From (23), (29) we get

Î2(x; z0,6z) ≈ 4

π2

T

6z

[
sin(α) cos

(
2π
x

 

)
sin
(

2π
z0

T

)
sin

(
π
6z

T

)
+ C

]
where

|C| ≤ 0·2.
We can see that the effect of Î2(x; z0,6z) can be neglected and the first approximation (30)
is valid only if at least one of the following conditions is satisfied

(a) 6z� T , or

(b) 6z/T ∈ Z, or

(c) 2z0/T ∈ Z.

(34)

For example, if 6z is predetermined by a particular application, Î2(x; z0,6z) still can be
minimized by a proper centering of the z-interval (to satisfy condition (c)). In fact, if con-
dition (c) is satisfied then 6z is not important, it can even be = 0, which means that the
z-interval reduces to a point z = z0 and Iavr(x) ≡ I (x, z0) ≈ I1(x). Otherwise, if neither of
the conditions (34) is satisfied,

Iavr(x) ≈ 1 + sin2 α

2

(
>
( x
 

)
− 1
)
+ sin(α)A

( x
 

)
, (35)

where

>(Y ) = 16

π2

∑
n odd

1≤n< 1
γ

1

n2
cos2(2πnY ),

has period 1/2, and

A(Y ) = 4

π2

T

6z
sin
(

2π
z0

T

)
sin

(
π
6z

T

)
cos (2πY ) ,

has period 1. Expression (35) shows that the envelope of Iavr(x) consists of three curves instead
of the original two in (31)

I±up(x) = 1+ (A− 1) sin2 α

2
± B sin(α),

I ′lower(x) = 1− sin2 α

2
,

(36)

where B = 4
π2

T
6z

∣∣sin
(
2π z0

T

)
sin
(
π 6z
T

)∣∣.
The new envelope is defined by
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Iupper(x) = max
Y

{
1 + sin2 α

2 (>(Y )− 1)+ sin(α)A(Y )
} = I+up(x),

Ilower(x) = min
Y

{
1 + sin2 α

2 (>(Y )− 1)+ sin(α)A(Y )
} ≈ min

{
I−up(x), I

′
lower(x)

}
.

Note however that, if cos
(
α
2

) = 0 or ≈ 0, P0 ≈ 0 and other nonzero terms in Î2(x; z0,6z)

should be taken into consideration, e.g. Re[P1P
∗
3 M13], to predict accurately Iavr(x).

4.2.2. Sinusoidal DOEs
From (23), (32) we get

Î2(x; z0,6z) ≈ 4

π

T

6z

[
−J0

(α
2

)
J1

(α
2

)
cos
(

2π
x

 

)
sin
(

2π
z0

T

)
sin

(
π
6z

T

)
+ C

]
,

where

|C| ≤
∑
n>1

|J0Jn|
n2

+ 2
∑

0<n<m

|JnJm|
m2 − n2

≈ 0·276.

Under the same conditions as in (34) Î2(x; z0,6z) can be neglected. Otherwise

Iavr(x) ≈ J2
0

(α
2

)
+ 4

∑
1≤n< 1

γ

J2
n

(α
2

)
cos2

(
2πn

x

 

)
− BJ0

(α
2

)
J1

(α
2

)
cos
(

2π
x

 

)
where

B = 4

π

T

6z

∣∣∣∣sin
(

2π
z0

T

)
sin

(
π
6z

T

)∣∣∣∣ .
4.3. NUMERICAL RESULTS

To check how well the asymptotic formulas (31), (33), (36) approximate the envelope of
the intensity, we calculated the exact intensity using (6), and overlayed the results with the
approximate envelope. We ran numerical computations for the stepwise and sinusoidal profile
DOEs with different envelope functions α(x). The physical parameters were

DOE length: 2w = 100µm

DOE period:  = 1µm

wavelength: λ = 0·15µ m

so that γ = λ
 
= 0·15, ε ≈ 2·4× 10−4.

To verify the first approximation, z0, 6z were chosen to satisfy condition (34) (z0 =
6·67µm ≈ T /2, 6z = 12·47µm). Figures 10–13 show plots of intensity for stepwise and
sinusoidal DOEs with different envelopes α(x) (linear, half-cosine, gaussian), where the ‘ex-
act solution’ indicates integral (6), computed numerically, and the ‘approximated envelope’
is determined analytically by (31), (33). We can see that analytically predicted envelopes
approximate quite well the exact solutions computed by numerical integration.
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Figure 10. Comparison of the exact intensity and the approximate envelopes for a piecewise constant DOE with
θ = 1

2 , α(x) = π (1 − |x|).

Figure 11. Comparison of the exact intensity and the approximate envelopes for a piecewise constant DOE with
θ = 1

2 , α(x) = π
2 (cos(πx) + 1).

To verify the second approximation, z0, 6z were chosen so that (34) is not satisfied
(z0 = 10µm ≈ 3T /4, 6z = 6·27µm ≈ T /2) and the first approximation is no longer
valid. Figure 14 shows that the ‘split’ envelope is well predicted by (36).

4.4. A DESIGN PROBLEM

To demonstrate how the inverse, or design, problem can be solved, consider a ‘target’ intensity
profile to be a quasi-periodic function with an ‘inside’ periodic structure of period  

2 enclosed
into a symmetric ‘envelope’ specified by 1 ± f (x/w), where 0 ≤ f (x) ≤ 1. Assuming that
we can adjust z (the distance between the DOE and the image plane), we can use the first
approximation for the piecewise constant DOE with the duty cycle θ = 1/2 and period  
given by

I (x) = 1 + sin2 α

2

(
>
( x
 

)
− 1
)
, α = α

( x
w

)
,

which has the required period =  
2 and envelope

Iupper = 1+ (A− 1) sin2 α

2
,

Ilower = 1 − sin2 α

2
.

To determine the envelope function α(x/w) for the DOE, solve the equation
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Figure 12. Comparison of the exact intensity and the approximate envelopes for a piecewise constant DOE with

θ = 1
2 , α(x) = πe−2x2

.

Figure 13. Comparison of the exact intensity and the approximate envelopes for a sinusoidal DOE with
α(x) = π

2 (cos(πx) + 1).

1− sin2 α

2
= 1 − f (x/w),

for α. We get that

α(x) = 2 arcsin
√
f (x).

For example, if f (x/w) = cos2
(
πx
2w

)
then α(x/w) = π

(
1 ± x

w

)
, i.e. linear function. Note,

however, that the upper curve of the envelope in this case would be

Iupper(x) = 1 + (A− 1)f (x),

which is slightly different from 1+f (x). As was shown before, the intensity envelope obtained
by this kind of DOEs will always be slightly asymmetric due to the fact that A = A(γ ) < 2.

The approach allows one to create a DOE which approximately meets the target intensity
pattern by determining α(x) directly from the envelope of the intensity profile.

5. Discussion

In this work, we have described a procedure by which approximate expressions for the in-
tensity of light caused by a DOE can be obtained. For DOEs which have two-scales, a rapid
oscillation contained in a smooth envelope, we have obtained formulas which describe in
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Figure 14. Comparison of the exact intensity and the approximate envelopes for a piecewise constant DOE with
θ = 1

2 , α(x) = π (1 − |x|).

detail, and levels of accuracy, the intensity patterns on the image plane. The accuracy of the
formulas were assessed in several examples. The framework can be used to design a DOE
directly, given a desired target-intensity pattern.

While the asymptotic calculations were carried out in detail for a 2-D geometry, extension
to 3-D is quite straightforward. Some results for 3-D DOEs were presented in Rudnaya’s
PhD thesis [11]. The key idea in this work is to rescale the problem so as to allow the use
of the Method of Stationary Phase in evaluating the integral in the Kirchhoff approximation.
Alternately, one can work directly with the rescaled Helmholtz equation and use the Method
of Multiscales to solve the problem. We present this approach in the appendix.

The main open problem not addressed in this work is assessing the accuracy of the ap-
proximations. There are two sources of error, namely the Kirchhoff approximation and the
asymptotic approximation that follows. It would be of great value to know how accurate the
solutions we obtained are in comparison to the solution of the wave equation.
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Appendix. Multiscale analysis

We provide an alternate method by which the asymptotic formula (17) is obtained. We start
with{

(∇2 + k2)u = 0, −∞ < x <∞, z > 0,

u(x, 0) = p(x) = A(x)eiBx/ε, −∞ < x <∞. (A-1)

which is the diffraction problem leading to the Kirchhoff approximation in (10).
Now we apply the multiple-scale analysis [12] to (A-1). Rescale the problem, using multi-

ple scales in both x and z, we have
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X1 = x, X2 = x

ε
, Z1 = z, Z2 = z

ε
,

p(x) = A(X1)e
iBX2, u(x, z) = U(X1, X2, Z1, Z2),

∂2u

∂x2
= UX1X1 +

2

ε
UX1X2 +

1

ε2
UX2X2,

∂2u

∂z2
= UZ1Z1 +

2

ε
UZ1Z2 +

1

ε2
UZ2Z2 .

(A-2)

Then (A-1) and (A-2) yield{
ε2(UX1X1 + UZ1Z1)+ 2ε(UX1X2 + UZ1Z2)+ (UX2X2 + UZ2Z2 + U) = 0,

U(X1, X2, 0, 0) = A(X1)eiBX2 .
(A-3)

Expect U(X1, X2, Z1, Z2) to be also periodic in X2 in the form

U(X1, X2, Z1, Z2) = V (X1, Z1, Z2)e
iBX2 . (A-4)

Put (A-4) into (A-3) and get{
ε2(VX1X1 + VZ1Z1)+ 2ε(iBVX1 + VZ1Z2)+ (VZ2Z2 + β2V ) = 0,

V (X1, 0, 0) = A(X1),
(A-5)

where β2 = 1 − B2. Assume Taylor expansion of V (X1, Z1, Z2) in powers of ε

V = V0 + εV1 + ε2V2 + . . .+ εmVm + . . . , (A-6)

Substitute (A-6) in (A-5) and collect powers of ε

O(1) :
{
(V0)Z2Z2 + β2V0 = 0

V0(X1, 0, 0) = A(X1)

O(ε) :
{
(V1)Z2Z2 + β2V1 = −2iB(V0)X1 − 2(V0)Z1Z2

V1(X1, 0, 0) = 0

O(ε2) :
{
(V2)Z2Z2 + β2V2 = −2iB(V1)X1 − 2(V1)Z1Z2 − (V0)X1X1 − (V0)Z1Z1

V2(X1, 0, 0) = 0

and so on.
For β2 �= 0 (|B| �= 1) the solution to O(1) system is given by

V0(X1, Z1, Z2) = C(X1, Z1)e
iβZ2,

where

β =

√

1− B2 (real), if |B| < 1,

i
√
B2 − 1 (imaginary), if |B| > 1.

This choice of β is justified by our problem, so that we deal only with outgoing (rather than
incoming) waves in case |B| < 1 and our solution is not exponentially increasing in Z2 in
case |B| > 1. The initial condition on V0 yields
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C(X1, 0) = A(X1). (A-7)

To exclude secular terms in the solution to O(ε) system require

−2iB(V0)X1 − 2(V0)Z1Z2 = −2i(BCX1 + βCZ1)e
iβZ2 ≡ 0,

or

BCX1 + βCZ1 ≡ 0. (A-8)

Equations (A-7), (A-8) have the solution

C(X1, Z1) = A(X1 − B
β
Z1).

Thus

V0 = A
(
X1 − B

β
Z1

)
eiβZ2, V1 ≡ 0.

Note also that V2 may have secular terms linear in Z2. So,

U(X1, X2, Z1, Z2) = A
(
X1 − B

β
Z1

)
eiBX2eiβZ2 + ε2O(Z2)

or

u(x, z) = A
(
x − B

β
z

)
ei(Bx+βz)/ε + εO(z). (A-9)

Note that, in case |B| > 1, |U | ∼ e−|β|Z2 is exponentially decreasing in Z2 and there-
fore can be neglected. The case |B| = 1 requires different multiple scales, but this case,
corresponding to  /λ = integer, is quite rare in practice, and we do not consider it in this
work.

The result (A-9) is consistent in the leading term with (17) derived by the method of
stationary phase.

References

1. R. Kashyap, Fiber Bragg Gratings. San Diego: Academic Press (1999) 458 pp.
2. G. R. Fowles, Introduction to Modern Optics. New York: Holt, Rinehart and Winston (1968) 304 pp.
3. J. W. Goodman, Introduction to Fourier Optics. New York: McGraw-Hill (1968) 287 pp.
4. C. E. Pearson (ed.), Handbook of Applied Mathematics. Selected Results and Methods. New York: Van

Nostrand Reinhold (1990) 1037 pp.
5. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers. New York:

McGraw-Hill (1978) 593 pp.
6. A. Papoulis, Systems and Transforms with Applications to Optics. New York: McGraw-Hill (1968) 474 pp.
7. M. Abramowitz and I. A. Stegun (eds), Handbook of Mathematical Functions. New York: Dover Publications

(1965) 1046 pp.
8. M. Born and E. Wolf, Principles of Optics. New York: Pergamon Press (1964) 803 pp.
9. F. W. J. Olver, Error bounds for stationary phase approximations. SIAM J. Math. Anal 5 (1974), 19–29.

10. J. T. Winthrop and C. R. Worthington, Theory of Fresnel images. I. Plane periodic objects in monochromatic
light. J. Opt. Soc. Am 55 (1965) 373–381.

11. S. Rudnaya, Analysis and Optimal Design of Diffrative Optical Elements. PhD thesis, University of
Minnesota, School of Mathematics (1999) 85 pp.

12. M. H. Holmes, Introduction to Perturbation Methods. New York: Springer-Verlag (1995) 337 pp.


